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In this paper it is shown that the reproducing kernel Hilbert spaces are adequate 
variational spaces for the description of the scattering amplitude in terms of a 
minimum norm principle. Then, the optimal scattering states as the solutions of 
the minimum norm problems are introduced and the essential characteristic 
features of the hadron-hadron scattering in the optimal state dominance limit 
are established. 

1. INTRODUCTION 

Reproducing kernels have been introduced by Aronszajn (1943, 1950) 
and Bergman (1950). In fact, a general theory of Hilbert spaces of functions 
that possess a reproducing kernel has been developed by Aronszajn (1943, 
1950). Their usefulness has been demonstrated in the field of conformal 
mapping (Bergman, 1950; Nehari, 1952), of  partial differential equations 
(Bergman and Schiffer, 1953), numerical analysis (Davis, 1963; Mesch- 
kowski, 1962; Golomb and Weinberger, 1958; Shapiro, 1961; Chalmers, 
1969; Larkin, 1970; Richter, 1971; Mansfield, 1971), etc. Many additional 
results of  special interest for applications are given by Meschkowski (1962), 
Shapiro (1971), and Hille (1972). The investigation of the representations 
of groups which acts in the reproducing kernel Hilbert spaces (RKHS) was 
stimulated by (see Carey, 1977, 1978) the paper of Perelomov (1972) in 
which he points out that the notion of "coherent state" (Glauber, 1963a, 
1963b; Klauder and McKenna, 1964; Klauder and Sudarshan, 1968; 
Bargmann, 1961) and the reproducing kernel are the same. On the other 
hand, Cutkosky (1973) has shown that for applications to the data analysis 
in the high-energy physics it is important to be able to construct reproducing 
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kernels which embody the information which are available from general 
considerations about the physics of problem. Also, Okubo (1974) proved 
that the dispersion inequalities for various problems in the elementary 
particle physics can be treated in unified and generalized manner by using 
the theory of RKHS. 

Recently, by introducing the fluctuations in partial scattering ampli- 
tudes, the experimental consequences of the existence of an upper bound 
L on the scattering angular momenta was investigated (Ion, 1981a). Then, 
it was shown that there exists a class of phenomena called dual diffractive 
scattering (DDS) characterized by diffractive pattern very sensitive to the 
cut-off parameter L. Moreover, assuming that the scattering behaves so as 
to maximize the forward unpolarized differential cross section ( do'/ dfl)(O ~ 
when the elastic integrated unpolarized cross section o-el is fixed then it was 
proved (Ion, 1982) that the DDS states as well as the dual diffractive 
resonances (Ion, 1981b; Ion and Ion-Mihai, 1981) are zero fluctuating 
scattering phenomena which saturate the optimal bound 

do~ (0o) < ~ l  ( L +  1) 2 
dR 4~" 

(1) 

In the present paper the scattering amplitude is considered as an 
element of a RKHS and then we attempt to indicate the unified manner in 
which the above results can be described by the reproducing kernels. Since 
in this paper an extensive use of reproducing kernels will be made, it has 
been found necessary to collect in Section 2 the main properties of the 
reproducing kernel functions. The general solutions of some important 
extremals problems are given in Section 3. Concrete applications to the 
case when the scattering amplitude is an element of a finite-dimensional 
subspace of L2(-1,  +1) are presented in Section 4 while the conclusions 
are summarized in Section 5. 

2. T H E  B A S I C  P R O P E R T I E S  OF R E P R O D U C I N G  K E R N E L S  

Let us consider the two-body elastic scattering process 

a + b ~ a + b  (2) 

where the particles a and b are spinless. Let x = cos 0 where 0 is the c.m. 
(center-of-mass) scattering angle. Let f ( x )  be the scattering amplitude of 
the process (2), with the normalization chosen in such a way that the 
differential cross section (&r /d i ) ) (x )  and the elastic integrated cross section 
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o"e~ are given by 

do- 
- - ( x ) = l f ( x ) l  ~, x ~ [ - 1 , + l ]  (3) 
dD~ 

f +L do " f+l 
0%, = 27r ~-~ (x) dx = 2rr If(x)l 2 dx = 27rllf[] z (4) 

--I  - 1  

Since we will work at fixed energy, the dependence of (do"/d~)(x) 
and O-el on this variable was suppressed. 

Therefore, the underlying idea is to consider the scattering amplitude 
f as an element of  a reproducing kernel Hilbert function space H defined 
on the interval [ -1 ,  +1] with the inner product  and the norm given by 

( f  g) = f (x)g(x)  dx, f g �9 H (5a) 
- I  

l]fll 2 ;  ( f , f )  = If(x)[ 2 dx, f ~  H (5b) 
- 1  

Definition I. A Hilbert space H of complex-valued functions defined 
on some set S is called reproducing kernel Hilbert space (RKHS for short) 
if for each fixed point y E S there exists a unique element Kyc  H such that 

(f, Ky) =f(y) a l l f e  H (6) 

Ky is called the reproducing element for the point y. The totality of  reproduc- 
ing elements is the reproducing kernel (RK) of  H or what is equivalent, RK 
of H is the map 

(x, y ) ~  g y ( x )  = K(X, y) (7) 

from S • S to the complex numbers. 
Before pointing out some of the properties of  RKHS we give a theorem 

which tells us when a Hilbert function space will have an RK. 

Theorem I. A Hilbert function space H is an RKHS if and only if the 
evaluation functional is bounded on 14, i.e., 

If(y)[--< Cy [If I[ (8) 

for all f e  H, where Cy -> 0 depend only on y. 

Proof I f  H is an RKHS, then 

If(Y)l = I(f, Ky)I ~ [[fll" IlK, I[ (9) 

SO the evaluation functional is bounded with Cy = ]lKy II = [K(y, y)]~/2. 



358 Ion and Scutaru 

Let the evaluation functional be bounded. Then by Frechet-Riesz 
representation theorem [see Davis (1963), Theorem 9.3.3] for y c S there 
exist a unique element gy e H such that f (x )= (f, gy). Therefore gy has 
required reproducing property. 

The RKHS has the following useful properties. 
(a) The reproducing kernel, if it exists, is unique. 
(b) K(x, y) = K(y, x) (Hermitian symmetry) (10) 
(c) ]K(x,y)12<-K(x,x)g(y,y); ]]gyj]2=K(y,y)~O (11) 
(d) If Ho is a subspace of the reproducing kernel Hilbert space H then 

Ho is also RKHS with the kernel defined by 

Ky(x) = (PKy)(X) (12) 

where P is the orthogonal projection from H onto Ho. 
(e) If the reproducing kernel Hilbert space H is a subspace of a larger 

space H1 then the projection from Hi onto H is given by 

(Pf)(y)=(Ky, f), f e l l 1  (13) 

(f) If H is a RKHS with reproducing kernel K, then for all f e  H and 
y e S  

If(Y)] <- [K(y, y)]I/Ellf] ] (14) 

equality holding if and only if 

K(x,y) 
f ( x ) = f ( y ) - -  K(y,y)#O (15) 

K(y, y)' 

(g) The kernel is a positive definite function, i.e., 

Y, a,ajK ( x,, xj ) >- 0 (16) 

for all finite sets {ai} c C and {xi] c S. 
(h) If {~b,} is a complete orthonormal sequence in RKHS, then 

K(x, y) =Y 4~.(x)6.(y) (17) 
n 

Corollary 1. If K(x,y) for x and y in [ -1 ,+1]  is the reproducing 
kernel of the Hilbert space H and if the scattering amplitude f is an element 
of H, then the functionals (3) and (4) must obey the inequality 

&r 
-< ~---~ K(y, y) d a  (y) z~  (lS) 
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If  K(y, y) # 0 and f(y) ~ 0, then the equality holds in (18) if and only if 

K(x, y) o'~1 
f(x)  = f ( y )  - -  -~f(y) K(x, y) (19) 

g(y,  y) 27r(do'/dIl)(y) 

3. THE R K H S  A N D  E X T R E M A L  P R O B L E M S  

Now we shall see that the reproducing kernel K(x, y) of the scattering 
amplitude Hilbert space H can be characterized as the solution to certain 
extremal problems. Therefore, let us define the following extremal problems. 

Problem A. Minimize Ilfll subject to f c  1-1, f (y)= a for a ~ C and 
y ~ [ - 1 , + l ] .  

Problem B. Maximize If(y)l subject to f ~  H, y ~  [ -1 ,  +1] and [Ifll = 
[o'et/27r] 1/2 fixed. 

Theorem 2. If K(y, y )~  O, then Problem A has the unique solution 
f =  bK r with b = a[K(y, y)]-l .  

Proof We write f in the form 

f =bKy+h, h c H  

Then, the condition f (y)= a gives 

a = bK(y, y) + h(y) 

and hence h(y)= 0. Moreover 

IlflF 2 = (bgr, bgy) + b(Ky, h) + b(h, gy)  + (h, h) 

Since (Ky, h) = h(y) = 0, we have 

Ilfll 2= Ilbgrll2+ Ilhll 2 

Therefore Ilfll is minimized when H hll = 0 and hence h = 0. Then f =  bKy 
with b = a[K(y, y)]-l .  [] 

Theorem 3. If K(y, y )~  O, then Problem B has a solution uniquely 
determined in the sense that f e  H is a solution if and only if it has the 
form f =  bKy with Ibl 2-- [[fll2[g(y, y)] - '  = (~rJ27r)[g(y, y)]-l. 

Proof The result is obtained using Eqs. (14), (15), (3), and (4). [] 

The following corollary lists different equivalent extremal properties 
of the function (19). 

Corollary 2. Assuming K (y, y) ~ O, y c [ -1 ,  +1], then (i) functions of 
form bKy minimize [If[I I f (y ) [  -~ subject to f c  H, f ( y ) ~  O, and maximize 
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[f(Y)l IIf[I - l  subject to f c  H, f #  0, (ii) functions of  Porm bKy, where Ibl2= 
[K(y, y)]-~, maximize I / (y) l  subject  to f ~  H, Ilf][ = 1. 

Definition 2. The scattering state described by the amplitude (19) is 
called optimal state for the process (2). 

The following extremal problem is a direct generalization of the 
Problem A. 

Problem C. Let y~, Y2 . . . .  , y,, be n distinct points in the interval 
[ -1 ,  +1] and let al, a2, � 9  a,, be n complex numbers distinct or not. Find 
the element of H of least norm for which f(y~) = a~, i = 1, 2 , . . . ,  n. 

Problem D. Let y~, Y2, �9 �9 �9 Yn be the points given in Problem C. For 
each j = 1, 2, . . . ,  n, find the element of  H of minimum norm for which 
f(yj)  = 1, f(Yk) =0,  k # j ,  k =  1 , 2 , . . . ,  n. 

Theorem 4. Let An be the determinant An=det[K(y~,y~)], i, j = l ,  
2 , . . . ,  n. For An ~ 0 the Problem C has the unique solution 

f ( x )  = - A ~  1" 

and 

0 

al 

a2 

an 

= 

j = l  An 

K(x, Yl) g(x,  Y2) . . . .  g(x,  Yn) 

K(yl ,  yl) K(ybY2)  . . .  K(yl ,  Y.) 

K(y2, y,) K(y2, Y2) . . .  K(y2, y,)  

K (y~, y~) K (y~, Y2) . . .  K (y~, y,) 

(20) 

0 

al 

I I f [12=-A7 ' .  a~ 

an 

a l  42 . . .  4n 

K(yl ,  yl) K(yl ,  Y2) . . .  K(y , ,  y~) 

K(y2, y~) K(y2, Y2) . - .  K(y2, Yn) 

K(y~, Y l )  K(y~, Y2) . - .  K(y~, y.) 

(21) 

where A,j(x) is the determinant obtained from An by the substitution of 
the row j with the elements K(x,  y~), K(x,  Y2), . . . ,  K(x,  Yn), respectively. 

Proof The subset of H where the elements satisfy the conditions 
f(y~) = a~, i = 1, 2 . . . . .  n, is evidently closed nonvoid and convex. Then it is 
easy to prove [see Davis (1963), Lemma 2.13, p. 332] the existence of a 
unique element of  minimum norm. To determine this element and its norm 
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we consider all elements of H of the form 

g(x) = ~ bjK(x, yj) (22) 
j= l  

which form a linear finite-dimensional subspace Ho of H. Hence for any 
f e  H we have a unique decomposition 

f = g + h ,  geHol  h ~ H ~  

where HS- is orthogonal complement of Ho in H. Since g ~ Ho and h ~ Hb L 
then 

(h, Kyj) = h(yj) =0, j =  1 , 2 , . . . ,  n 

and 

f(y~) = g(yj) = aj, j = 1, 2 , . . . ,  n 

Further, from (g, h ) =  0 we have 

Ilfl] 2= HgH2+ Ilh]l 2 

Hence it follows that the minimum is obtained for II h II--0 and thus 
h = 0. Therefore, we have obtained that the function of minimum norm is 
of form (22) for some particular choice of the complex numbers bj, j = 
1, 2 , . . . ,  n. Then, these numbers are uniquely determined using the following 
n linear equations: 

bjK(yi, js)=ai,  i = l , 2 , . . . , n  
j= l  

We note that the value of the determinant An = det[K(yi, yj)] is real 
since K(yi, Yi) = K(yj, y~). Also, from the property (g) of RK it follows that 
An ~ 0. The value h ,  = 0 is excluded since in this case the extremal Problem 
C has no solution. Once the bjs have been found by the Cramer's rule, then 
it is easy to find the results (20) and (21). [] 

Corollary 3. If A, ~ 0, then (i) Problem D has the unique solution 

h , j (x)  for each j = 1, 2, n (23) s  . . . ,  

(ii) I f  the points y~ E [ -1 ,  +1] satisfy the conditions 

K(yj, y j ) eO;K(y i ,  y~)=g(yj ,  yj)6o, i , j = l , 2 , . . . , n  (24) 

then 

K(x,  yj) 
f j(x) = K(yj, yj)' j = 1, 2 , . . . ,  n (25) 
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and the results (20) and (21) are given by 

~. K(x ,  yj) 
f ( x )  - - z, f(Yj) (26) 

j = l  K(yj, yj) 

11/112= ~ if(yj)12[g(yj, yj)]-I (27) 
j = l  

(iii) If n = dim H, then the functions (25) form a complete orthogonal 
system. 

Definition 3. The biorthogonal functions fj(x) defined by equations 
(23) are called fundamental optimal states (FOS) of the scattering 
process (2). 

Definition 3 is inspired by the fact that the system of functions (23) 
represents a generalization of the system of fundamental polynomials used 
in the Lagrange interpolation [see Davis (1963), p. 33]. 

The importance of FOS systems lie in the identity 

fj(yk) = ~jk = { ~ i f j ~ k  
i f j  = k (28) 

and the resulting simple explicit solutions (20) [or (26)] and (23) [or (25)] 
of the extremal Problem C and Problem D, respectively. 

4. APPLICATIONS 

Let f ( x )  be the scattering amplitude of the process (2) written in terms 
of partial amplitude as 

L 

f ( x ) =  ~ (21+l)fiPt(x), XE[--1,+I] , f I~C (29) 
/=o  

where P,(x), l = 0, 1, . . .  are the Legendre polynomials. Then it is easy to 
verify that (i) the scattering amplitude f ( x )  is an element of an R K H S  H 
defined on [-1, +1] if and only if 

L<oo (30) 

and that (ii) H is an (L+l)-dimensional subspace of L2[-1, +1] and 
possesses the reproducing kernel 

K ( x ' Y ) = ~ ' ( l + l )  

= 1 (L+ 1) PL+I(x)Pr(y) -- Pc(x)PL+,(y) (31a) 
Z x - - y  
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K(y, y) =�89 1)[PL+I(y)PL(y) -- [aL(y)PL+,(Y)] (3 l,b) 

where Pt(Y) = dPt(x)/dx. 

Corollary 4. Assume that the scattering amplitude f (x )  is an element 
of the Hilbert space H which has the reproducing kernel (31a,b.). 

(i) Then, if O-el and (do./df~)(l) are given, any cut-off on the angular 
momentum must obey the bound 

4~r do. 
( L + l ) 2 ~  (1) (32) 

o.~l dD, 

(ii) The equality holds in (32) if and only if f (x )  is the optimal 
amplitude 

K(x, 1) PL+I(X)@PL(x) 
f (x )  = f ( l )  K(1, 1------) - f ( 1 )  (L +  1) 2 (33a) 

where L is 

�9 f [ 4 ~  do. ]1/2 1) L---lnteger~k~-~--~(1) j - ~ (33b) 

(iii) The logarithmic slope of the forward diffraction peak is given by 

~ dt l n~ -~ ( s , t )  , = o = 4  - ~1  "d~ (34) 

where ~ s  and ~/[~ are the c.m. energy and transfer momentum, respectively 
and A is the c.m. d'Broglie wave length. 

(iv) The forward diffraction peak of  the optimal phenomena described 
by equations (33a,b) possesses the scaling property 

da (x)= for L>> 1, small ~" (35a) (do./da)(1) 

where 

~.=2[itlbo]=lX21tl[4~ ~d~ ])1/2 
t Lo.o,'-.. (1)-1 (35b) 

and J~(~') is the Bessel function of first order. 

Also, using the kernel (31a,b), the solution (20), (21) of the extremal 
Problem C can be written in an explicit form�9 Here we present this solution 
only in the particular case when the points yj c [ -1 ,  +1], j = 1, 2 . . . .  , L +  1, 
are the zeros of  PL+~(x). 



3 6 4  Ion and Scutaru 

Corollary 5. Assume that the scattering amplitude f ( x )  is an element 
of the RKHS with the reproducing kernel (31a,b) and that the points 
yj ~ [-1, +1] are the zeros of PL+I(X). 

(i) Then, the fundamental optimal states (25) are given by 

K(x, yj) PL+I(X) 
K(yj, yj) - (x -Y~)PL+,(Yj)' j = 1, 2 , . . . ,  L +  1 (36) 

(ii) The solution of the extremal Problem C is 

L + I  ' PL+I(X) 
f ( x )  = Y. f(y2) (37a) 

j=l (x -Y~)A+1(Yj) 

where 

(iii) The partial amplitudes are expressed 
1, 2, . . . ,  L +  1, as follows: 

l L + I  PI(Y~) 
ft = ~ ~=~ f(yj) 

PL+I(Yj)PL(Yj)' 

and f~=0 for I>L. 

o'el 1 ~1 d~ 1 
4~r - L +  1 ~=l ~ (yj) PL+~(Y~)PL(Yj) (37b) 

in terms of f(yj),  j =  

I<-L (38) 

Remark I. For the Hilbert space H with the reproducing kernel (3 la,b) 
and for y~ e [-1,  +1] satisfying the equations PL+1(Yj) = O,j = 1, 2 , . . . ,  L+ 1, 
the FOS system is the system of fundamental polynomials [see Davis (1963), 
p. 33] for the Lagrange interpolation problem when the scattering amplitude 
f ( x )  is given in the zeros of the Legendre polynomials. 

Remark 2. The predictions given by Corollary 4 are a particular case 
(the zero-spin scattering case) of the results given in Ion (1982a). All the 
results of Sections 2 and 3 can be extended to the scattering of particles 
with arbitrary spins. 

5. CONCLUSIONS 

Information on the scattering amplitudes can be obtained by assump- 
tion that the scattering system (20) behaves as to optimize some given 
measure of the scattering effectiveness. Then, the behavior of the system 
can be completely specified by identifying the criterion of effectiveness and 
applying optimization to it. This approach, known as describing the scatter- 
ing system in terms of an optimum principle, was illustrated here by using 
the Hilbert space methods. 
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The conclusions of this paper may be summarized as follows: 
(1 ~ The RKHS is an adequate variational space for the description 

of the scattering amplitude in terms of a minimum norm principle. 
(20 ) The optimal scattering states, introduced here as the solutions of 

the minimum norm problems are responsible for the diffractive patterns as 
well as for the dual diffractive behavior (Ion, 1981a; Ion, 1982a,b; Ion, 
1981b; Ion and Ion-Mihai, 1981a,b) of the two-body elastic scattering. 

(3 ~ The expansion (37a) of the scattering amplitude in terms of the 
FOS system (36) seems to be an important alternative to the partial wave 
analysis. 

(4 ~ The optimal state dominance in the hadron-hadron scattering is 
a fact well established (Ion, 1982) for all pp, pp, ~r• k• scattering at all 
energies higher than 2 GeV where the predictions (34) and (35a,b) are 
satisfied experimentally to a surprising accuracy. Detailed comparisons of 
the optimal state dominance predictions with the experimental data at low 
energies are of great theoretical interest since they might provide experi- 
mental evidence for a specific interpretation of Morrison D resonances 
(Morrison, 1970) as optimal resonances (Ion, 1982b). 

ACKNOWLEDGMENTS 

One of us (D.B.I.) is grateful to Professors Abdus Salam and L. 
Bertocchi as well as the International Atomic Energy Agency for hospitality 
extended at the International Centre for Theoretical Physics, Trieste, where 
this paper was finished. 

REFERENCES 

Aronszajn, N. (1943). Proc. Cambr. Philos. Soc., 39, 133. 
Aronszajn, N. (1950). Trans. Am. Math. Soc., 68, 337. 
Bargmann, V. (1961). Commun. Pure Appl. Math., 19, 187. 
Bergman, S. (1950). The Kernel Function and Conformal Mapping, Mathematical Surveys No. 

5. American Mathematical Society, Providence, Rhode Island. 
Bergman, S., and Schiffer, M. (1953). Kernel Function and Elliptic Differential Equations in 

Mathematical Physics. Academic Press, New York. 
Carey, A. L. (1977). Commun. Math. Phys., 52, 77. 
Carey, A. L. (1978). Rep. Math. Phys., 14, 247. 
Chalmers, B. L. (1969). Pacific J. Math., 31, 619. 
Cutkosky, R. E. (1973). J. Math. Phys., 14, 1231. 
Davis, P. (1963). Interpolation and Approximation. Blaisdel. New York. 
Glauber, R. J. (1963a). Phys. Rev. 130, 2529. 
Glauber, R. J. (1963b). Phys. Rev., 131, 2766. 
Golomb, M., and Weinberger, H. F. (1958). Proceedings of Symposium at University of Wisconsin, 

Madison, R. E. Langer, ed., University of Wisconsin Press, Madison, p. 117. 



366 Ion and Scutaru 

Hille, E. (1972). Rocky Mountain J. Math., 2, 321. 
Ion, D. B. (1981a). Rev. Roumaine Phys., 26, 25. 
Ion, D. B. (1981b). Rev. Roumaine Phys., 26, 15. 
Ion, D. B. (1982a). Towards an optimum principle in hadron-hadron scattering, Preprint 

IPNE, FT-211-1982, Bucharest. 
Ion, D. B. (1982b). Scaling and S-channel helicity conservation in hadron-hadron scattering, 

Preprint IPNE, FT-218-1982, Bucharest. 
Ion, D. B., and Ion-Mihai, R. (1981a). Nucl. Phys., A360, 400. 
Ion, D. B., and Ion-Mihai, R. (1981b). Experimental evidence for dual diffractive resonances 

in nucleon-nucleus scattering, Preprint IPNE, FT-204-1981, Bucharest. 
McKenna, J., and Klauder, J. R. (1964). J. Math. Phys., 5, 878. 
Klauder, J. R., and Sudarshan, E. C. G. (1968). Fundamentals of Quantum Optics. Benjamin, 

New York. 
Larkin, F. M. (1970). Math. Comp., 24, 911. 
Mansfield, L. E. (1971). SIAMJ. Numer. Anal., g, 115. 
Meschkowski, A. (1962). Hilbertsche Raume mit Kernfunetion. Springer, Berlin. 
Morrison, D. R. O. (1970). Report at XV International Conference on High Energy Physics, 

Kiev. 
Nehari, Z. (1952). Conformal Mapping. McGraw-Hill, New York. 
Okubo, S. (1974). J. Math. Phys., 15, 963. 
Perelomov, A. M. (1972). Commun. Math. Phys., 26, 222. 
Richter, N. (1970). SIAM J. Numer. Anal., 7, 67. 
Richter, N. (1971). S I A M Z  Numer. Anal., 8, 467, 583. 
Shapiro, H. S. (1971). Topics in Approximation Theory, Lectures Notes in Mathematics, No. 

187, Ch. 6. Springer, Berlin. 
Shapiro, H. S., and Shields, A. L. (1961). Am. J. Math., 83, 513. 


